Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.751
Filtrar
1.
Exp Cell Res ; 437(1): 113995, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490621

RESUMO

PURPOSE: Oral Squamous Cell Carcinoma (OSCC) is the 6th most common cancer worldwide. It is generally aggressive and closely associated with chemoresistance and poor survival. There is accumulating evidence for the involvement of inhibitors of apoptosis proteins (IAPs), including IAP1 and XIAP, in mediating chemotherapy resistance in OSCC. Various strategies for targeting IAPs have been designed and tested in recent years and several small molecule IAP inhibitors are in clinical trials as monotherapies as well as in combination with radiotherapy and chemotherapy. The purpose of this study was to evaluate and compare the efficacy and biological activity of three IAP inhibitors both as stand-alone and sensitising agents to cisplatin in a preclinical model of squamous cell carcinoma of the tongue. METHODS: Cisplatin-sensitive SCC4 and -resistant SCC4cisR cells were utilised in this study. Apoptosis was evaluated by flow cytometric analysis of Annexin V/Propidium Iodide-stained cells. Expression of IAP proteins was determined by western blotting and knockdown of cIAP1, livin and XIAP was conducted by transfection of cells with siRNA. RESULTS: We establish for the first time the therapeutic efficacy of the Smac mimetic, BV6 and the XIAP inhibitor Embelin, for OSCC. Both of these IAP targeting agents synergistically enhanced cisplatin-mediated apoptotic cell death in resistant cells which was mediated in part by depletion of XIAP. In addition, knockdown of XIAP using siRNA enhanced cisplatin-mediated cell death, demonstrating the importance of targeting XIAP in this sensitisation. CONCLUSION: These findings provide pre-clinical evidence that IAP inhibition may be a valuable therapeutic option in OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Cisplatino/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Linhagem Celular Tumoral , Neoplasias Bucais/tratamento farmacológico , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Apoptose/fisiologia , Proteínas de Transporte , RNA Interferente Pequeno
2.
Sci Rep ; 14(1): 6373, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493257

RESUMO

Cancer selective apoptosis remains a therapeutic challenge and off-target toxicity has limited enthusiasm for this target clinically. Sigma-2 ligands (S2) have been shown to enhance the cancer selectivity of small molecule drug candidates by improving internalization. Here, we report the synthesis of a novel drug conjugate, which was created by linking a clinically underperforming SMAC mimetic (second mitochondria-derived activator of caspases; LCL161), an inhibitor (antagonist) of inhibitor of apoptosis proteins (IAPinh) with the sigma-2 ligand SW43, resulting in the new chemical entity S2/IAPinh. Drug potency was assessed via cell viability assays across several pancreatic and ovarian cancer cell lines in comparison with the individual components (S2 and IAPinh) as well as their equimolar mixtures (S2 + IAPinh) both in vitro and in preclinical models of pancreatic and ovarian cancer. Mechanistic studies of S2/IAPinh-mediated cell death were investigated in vitro and in vivo using syngeneic and xenograft mouse models of murine pancreatic and human ovarian cancer, respectively. S2/IAPinh demonstrated markedly improved pharmacological activity in cancer cell lines and primary organoid cultures when compared to the controls. In vivo testing demonstrated a marked reduction in tumor growth rates and increased survival rates when compared to the respective control groups. The predicted mechanism of action of S2/IAPinh was confirmed through assessment of apoptosis pathways and demonstrated strong target degradation (cellular inhibitor of apoptosis proteins-1 [cIAP-1]) and activation of caspases 3 and 8. Taken together, S2/IAPinh demonstrated efficacy in models of pancreatic and ovarian cancer, two challenging malignancies in need of novel treatment concepts. Our data support an in-depth investigation into utilizing S2/IAPinh for the treatment of cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Apoptose , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral
3.
Methods ; 224: 35-46, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373678

RESUMO

Bivalent Smac mimetics have been shown to possess binding affinity and pro-apoptotic activity similar to or more potent than that of native Smac, a protein dimer able to neutralize the anti-apoptotic activity of an inhibitor of caspase enzymes, XIAP, which endows cancer cells with resistance to anticancer drugs. We design five new bivalent Smac mimetics, which are formed by various linkers tethering two diazabicyclic cores being the IAP binding motifs. We built in silico models of the five mimetics by the TwistDock workflow and evaluated their conformational tendency, which suggests that compound 3, whose linker is n-hexylene, possess the highest binding potency among the five. After synthesis of these compounds, their ability in tumour cell growth inhibition and apoptosis induction displayed in experiments with SK-OV-3 and MDA-MB-231 cancer cell lines confirms our prediction. Among the five mimetics, compound 3 displays promising pro-apoptotic activity and deserves further optimization.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Conformação Molecular , Apoptose , Linhagem Celular Tumoral
4.
J Drug Target ; 32(3): 223-240, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38252514

RESUMO

Survivin holds significant importance as a member of the inhibitor of apoptosis protein (IAP) family due to its predominant expression in tumours rather than normal terminally differentiated adult tissues. The high expression level of survivin in tumours is closely linked to chemotherapy resistance, heightened tumour recurrence, and increased tumour aggressiveness and serves as a negative prognostic factor for cancer patients. Consequently, survivin has emerged as a promising therapeutic target for cancer treatment. In this review, we delve into the various biological characteristics of survivin in cancers and its pivotal role in maintaining immune system homeostasis. Additionally, we explore different therapeutic strategies aimed at targeting survivin.


Assuntos
Neoplasias , Adulto , Humanos , Survivina/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/uso terapêutico , Apoptose , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas Associadas aos Microtúbulos/uso terapêutico
5.
Nat Commun ; 15(1): 891, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291026

RESUMO

Procaspase 9 is the initiator caspase for apoptosis, but how its levels and activities are maintained remains unclear. The gigantic Inhibitor-of-Apoptosis Protein BIRC6/BRUCE/Apollon inhibits both apoptosis and autophagy by promoting ubiquitylation of proapoptotic factors and the key autophagic protein LC3, respectively. Here we show that BIRC6 forms an anti-parallel U-shaped dimer with multiple previously unannotated domains, including a ubiquitin-like domain, and the proapoptotic factor Smac/DIABLO binds BIRC6 in the central cavity. Notably, Smac outcompetes the effector caspase 3 and the pro-apoptotic protease HtrA2, but not procaspase 9, for binding BIRC6 in cells. BIRC6 also binds LC3 through its LC3-interacting region, probably following dimer disruption of this BIRC6 region. Mutation at LC3 ubiquitylation site promotes autophagy and autophagic degradation of BIRC6. Moreover, induction of autophagy promotes autophagic degradation of BIRC6 and caspase 9, but not of other effector caspases. These results are important to understand how the balance between apoptosis and autophagy is regulated under pathophysiological conditions.


Assuntos
Apoptose , Proteínas Inibidoras de Apoptose , Apoptose/genética , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Caspases/metabolismo , Autofagia/genética , Ubiquitinação , Proteínas Mitocondriais/metabolismo
6.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296349

RESUMO

Cell death and proliferation are at a glance dichotomic events, but occasionally coupled. Caspases, traditionally known to execute apoptosis, play non-apoptotic roles, but their exact mechanism remains elusive. Here, using Drosophila intestinal stem cells (ISCs), we discovered that activation of caspases induces massive cell proliferation rather than cell death. We elucidate that a positive feedback circuit exists between caspases and JNK, which can simultaneously drive cell proliferation and cell death. In ISCs, signalling from JNK to caspases is defective, which skews the balance towards proliferation. Mechanistically, two-tiered regulation of the DIAP1 inhibitor rpr, through its transcription and its protein localization, exists. This work provides a conceptual framework that explains how caspases perform apoptotic and non-apoptotic functions in vivo and how ISCs accomplish their resistance to cell death.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retroalimentação , Proteínas Inibidoras de Apoptose/metabolismo , Morte Celular , Drosophila/metabolismo , Caspases/metabolismo , Proliferação de Células/genética , Células-Tronco/metabolismo
7.
Apoptosis ; 29(3-4): 503-520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38066391

RESUMO

The hypomethylation agent decitabine (DAC), in combination with other apoptosis inducers, is considered a potential modality for cancer treatment. We investigated the mechanism underlying the combined cytotoxicity of DAC and YM155 in acute myeloid leukemia (AML) cells because of increasing evidence that YM155 induces apoptosis in cancer cells. Co-administration of DAC and YM155 resulted in synergistic cytotoxicity in AML U937 cells, which was characterized by the induction of apoptosis, NOXA-dependent degradation of MCL1 and survivin, and depolarization of mitochondria. Restoration of MCL1 or survivin expression attenuated DAC/YM155-induced U937 cell death. DAC initiated AKT and p38 MAPK phosphorylation in a Ca2+/ROS-dependent manner, thereby promoting autophagy-mediated degradation of ß-TrCP mRNA, leading to increased Sp1 expression. DAC-induced Sp1 expression associated with Ten-eleven-translocation (TET) dioxygenases and p300 was used to upregulate the expression of SLC35F2. Simultaneously, the activation of p38 MAPK induced by DAC, promoted CREB-mediated NOXA expression, resulting in survivin and MCL1 degradation. The synergistic cytotoxicity of DAC and YM155 in U937 cells was dependent on elevated SLC35F2 expression. Additionally, YM155 facilitated DAC-induced degradation of MCL1 and survivin. A similar mechanism explained DAC/YM155-mediated cytotoxicity in AML HL-60 cells. Our data demonstrated that the synergistic cytotoxicity of DAC and YM155 in AML cell lines U937 and HL-60 is dependent on AKT- and p38 MAPK-mediated upregulation of SLC35F2 and p38 MAPK-mediated degradation of survivin and MCL1. This indicates that a treatment regimen that amalgamates YM155 and DAC may be beneficial for AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Membrana Transportadoras , Naftoquinonas , Humanos , Survivina/genética , Survivina/metabolismo , Apoptose , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Decitabina/farmacologia , Células U937 , Regulação para Cima , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Naftoquinonas/farmacologia , Linhagem Celular Tumoral
9.
J Pharmacol Sci ; 154(1): 30-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081681

RESUMO

Overexpression of inhibitor of apoptosis (IAP) proteins is associated with poor prognosis. In multiple myeloma (MM), the IAP inhibitors (IAPi), LCL161, have been evaluated in preclinical and clinical settings but are not fully effective. Among IAPs, XIAP has the strongest anti-apoptotic function with direct binding activity to caspases and cIAP1 and cIAP2 are positive regulator of NF-κB signaling. Prior IAPi such as LCL161 has high affinity to cIAP1 and cIAP2 resulting in inferior inhibiting activity against XIAP. A novel dimeric IAPi, AZD5582 (C58H78N8O8), have high binding potency to XIAP with EC50 dose of 15 nM, enabling to simultaneous inhibit XIAP and cIAP1/2. AZD5582 monotherapy showed cell growth inhibition for all MM cell lines, MM1S, RPMI8226, U266 and KMS-5 and induced apoptosis. AZD5582 further showed anti-proliferation effect under the IL-6 additional condition and inhibited JAK-STAT signaling triggered by IL-6. AZD5582 combined with carfilzomib therapy showed a synergistic effect. Enhanced apoptosis was also observed in combination therapy. Synergistic effect was further observed with other conventional therapeutics. Simultaneous XIAP and cIAP1/2 inhibition by the dimeric IAPi AZD5582 is promising. This study provides a rationale of AZD5582 as a new treatment strategy in monotherapy and in combination therapy.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Interleucina-6 , Linhagem Celular Tumoral , Apoptose , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/farmacologia
10.
J Med Chem ; 66(24): 16515-16545, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38092421

RESUMO

Survivin, a homodimeric protein and a member of the IAP family, plays a vital function in cell survival and cycle progression by interacting with various proteins and complexes. Its expression is upregulated in cancers but not detectable in normal tissues. Thus, it has been regarded and validated as an ideal cancer target. However, survivin is "undruggable" due to its lack of enzymatic activities or active sites for small molecules to bind/inhibit. Academic and industrial laboratories have explored different strategies to overcome this hurdle over the past two decades, with some compounds advanced into clinical testing. These strategies include inhibiting survivin expression, its interaction with binding partners and homodimerization. Here, we provide comprehensive analyses of these strategies and perspective on different small molecule survivin inhibitors to help drug discovery targeting "undruggable" proteins in general and survivin specifically with a true survivin inhibitor that will prevail in the foreseeable future.


Assuntos
Proteínas Inibidoras de Apoptose , Neoplasias , Humanos , Survivina/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias/metabolismo , Descoberta de Drogas , Dimerização , Apoptose
11.
World J Surg Oncol ; 21(1): 381, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082268

RESUMO

BACKGROUND: Multidisciplinary therapy centered on antitumor drugs is indicated in patients with unresectable pancreatic neuroendocrine tumors (PanNET). However, the criteria for selection of optimal therapeutic agents is controversial. The aim of this study was to assess the malignancy of PanNET for optimal therapeutic drug selection. METHODS: Forty-seven patients with PanNET who underwent surgery were reviewed retrospectively, and immunohistochemical characteristics, including expression of GLUT1, SSTR2a, SSTR5, Survivin, X-chromosome-linked inhibitor of apoptosis protein (XIAP), and Caspase3 in the resected specimens, were investigated. Relapse-free survival (RFS) and overall survival (OS) were evaluated with regard to the characteristics using the Kaplan-Meier method and compared with the log-rank test. RESULTS: GLUT1 expression showed significant correlation with sex (p = 0.036) and mitotic rate (p = 0.048). Survivin and XIAP expression showed significant correlation with T-stage (p = 0.014 and 0.009), p-Stage (p = 0.028 and 0.045), and mitotic rate (p = 0.023 and 0.007). XIAP expression also significantly influenced OS (p = 0.044). CONCLUSIONS: Survivin and XIAP correlated with grade of malignancy, and expression of XIAP in particular was associated with a poor prognosis. Expression of these proteins may be a useful indicator to select optimal therapeutic agents in PanNET.


Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Survivina/metabolismo , Survivina/uso terapêutico , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/uso terapêutico , Estudos Retrospectivos , Transportador de Glucose Tipo 1 , Prognóstico , Recidiva Local de Neoplasia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/uso terapêutico , Apoptose , Neoplasias Pancreáticas/patologia
12.
Cell Death Dis ; 14(11): 714, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919300

RESUMO

Bruton's tyrosine kinase inhibitors (BTKi) and CAR T-cell therapy have demonstrated tremendous clinical benefits in mantle cell lymphoma (MCL) patients, but intrinsic or acquired resistance inevitably develops. In this study, we assessed the efficacy of the highly potent and selective MCL-1 inhibitor AZD5991 in various therapy-resistant MCL cell models. AZD5991 markedly induced apoptosis in these cells. In addition to liberating BAK from the antiapoptotic MCL-1/BAK complex for the subsequent apoptosis cascade, AZD5991 downregulated inhibitor of apoptosis proteins (IAPs) through a BAK-dependent mechanism to amplify the apoptotic signal. The combination of AZD5991 with venetoclax enhanced apoptosis and reduced mitochondrial oxygen consumption capacity in MCL cell lines irrespective of their BTKi or venetoclax sensitivity. This combination also dramatically inhibited tumor growth and prolonged mouse survival in two aggressive MCL patient-derived xenograft models. Mechanistically, the augmented cell lethality was accompanied by the synergistic suppression of IAPs. Supporting this notion, the IAP antagonist BV6 induced dramatic apoptosis in resistant MCL cells and sensitized the resistant MCL cells to venetoclax. Our study uncovered another unique route for MCL-1 inhibitor to trigger apoptosis, implying that the pro-apoptotic combination of IAP antagonists and apoptosis inducers could be further exploited for MCL patients with multiple therapeutic resistance.


Assuntos
Linfoma de Célula do Manto , Humanos , Camundongos , Animais , Adulto , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Regulação para Baixo , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
13.
FASEB J ; 37(12): e23292, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37971407

RESUMO

Immunotoxins (ITs) target cancer cells via antibody binding to surface antigens followed by internalization and toxin-mediated inhibition of protein synthesis. The fate of cells responding to IT treatment depends on the amount and stability of specific pro-apoptotic and pro-survival proteins. When treated with a pseudomonas exotoxin-based immunotoxin (HB21PE40), the triple-negative breast cancer (TNBC) cell line MDA-MB-468 displayed a notable resistance to toxin-mediated killing compared to the epidermoid carcinoma cell line, A431, despite succumbing to the same level of protein synthesis inhibition. In a combination screen of ~1912 clinically relevant and mechanistically annotated compounds, we identified several agents that greatly enhanced IT-mediated killing of MDA-MB-468 cells while exhibiting only a modest enhancement for A431 cells. Of interest, two Smac mimetics, birinapant and SM164, exhibited this kind of differential enhancement. To investigate the basis for this, we probed cells for the presence of inhibitor of apoptosis (IAP) proteins and monitored their stability after the addition of immunotoxin. We found that high levels of IAPs inhibited immunotoxin-mediated cell death. Further, TNFα levels were not relevant for the combination's efficacy. In tumor xenograft studies, combinations of immunotoxin and birinapant caused complete regressions in MDA-MB-468tumor-bearing mice but not in mice with A431 tumors. We propose that IAPs constitute a barrier to immunotoxin efficacy which can be overcome with combination treatments that include Smac mimetics.


Assuntos
Imunotoxinas , Neoplasias , Humanos , Animais , Camundongos , Proteínas Inibidoras de Apoptose/metabolismo , Imunotoxinas/farmacologia , Linhagem Celular Tumoral , Dipeptídeos/farmacologia , Apoptose
14.
Life Sci ; 335: 122260, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37963509

RESUMO

Survivin is a member of the family of inhibitors of apoptosis proteins (IAPs). It is involved in the normal mitotic process and acts as an anti-apoptotic molecule. While terminally differentiated normal tissues lack survivin, several human malignancies have significant protein levels. Resistance to chemotherapy and radiation in tumor cells is associated with survivin expression. Decreased tumor development, apoptosis, and increased sensitivity to chemotherapy and radiation are all effects of downregulating survivin expression or activity. As a prospective cancer treatment, small molecules targeting the transcription and translation of survivin and molecules that can directly bind with the survivin are being explored both in pre-clinical and clinics. Pre-clinical investigations have found and demonstrated the effectiveness of several small-molecule survivin inhibitors. Unfortunately, these inhibitors have also been shown to have off-target effects, which could limit their clinical utility. In addition to small molecules, several survivin peptide vaccines are currently under development. These vaccines are designed to elicit a cytotoxic T-cell response against survivin, which could lead to the destruction of tumor cells expressing survivin. Some survivin-based vaccines are advancing through Phase II clinical studies. Overall, survivin is a promising cancer drug target. However, challenges still need to be addressed before the survivin targeted therapies can be widely used in the clinics.


Assuntos
Neoplasias , Vacinas , Humanos , Survivina , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Apoptose , Vacinas/uso terapêutico , Proteínas Associadas aos Microtúbulos
15.
Immun Inflamm Dis ; 11(10): e978, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37904685

RESUMO

AIM: Rheumatoid arthritis (RA) is a chronic inflammation mediated by an autoimmune response. Baculoviral IAP repeat-containing 2 (BIRC2) and tumor necrosis factor receptor 1-associated death domain protein (TRADD) have been reported to be highly expressed in RA, while their specific roles during RA progression remain unclear. This study aims to explore the specific regulation of BIRC2/TRADD during the progression of RA. METHODS: C28/I2 cells were stimulated by lipopolysaccharide (LPS) to establish an in vitro RA cellular model. The expression level of BIRC2 and TRADD was examined by quantitative real-time polymerase chain reaction and western blot. Cell Counting Kit-8 and flow cytometry assays were performed to examine cell viability and necroptosis, respectively. The oxidative stress markers were detected using commercial kits, and the pro-inflammatory cytokines were measured by ELISA assay. The interaction between BIRC2 and TRADD was verified by co-immunoprecipitation assay. RESULTS: BIRC2 and TRADD were discovered to be highly expressed in LPS-mediated C28/I2 cells. BIRC2 knockdown was demonstrated to inhibit LPS-induced cell viability loss, necroptosis, oxidative stress, and inflammation in C28/I2 cells. BIRC2 could interact with TRADD and positively regulate TRADD expression. In addition, the protective role of BIRC2 knockdown against LPS-mediated injuries in C28/I2 cells was partly weakened by TRADD overexpression. CONCLUSION: In summary, BIRC2 knockdown alleviated necroptosis, oxidative stress, and inflammation in LPS-mediated C28/I2 cells, which might correlate to the regulatory role of TRADD, indicating a novel target for the treatment of RA.


Assuntos
Apoptose , Artrite Reumatoide , Humanos , Apoptose/genética , Regulação para Baixo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Inflamação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo
16.
Cancer Res Commun ; 3(11): 2386-2399, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37874199

RESUMO

XIAP, the most potent mammalian inhibitor of apoptosis protein (IAP), critically restricts developmental culling of sympathetic neuronal progenitors, and is correspondingly overexpressed in most MYCN-amplified neuroblastoma tumors. Because apoptosis-related protein in the TGFß signaling pathway (ARTS) is the only XIAP antagonist that directly binds and degrades XIAP, we evaluated the preclinical effectiveness and tolerability of XIAP antagonism as a novel targeting strategy for neuroblastoma. We found that antagonism of XIAP, but not other IAPs, triggered apoptotic death in neuroblastoma cells. XIAP silencing induced apoptosis while overexpression conferred protection from drug-induced apoptosis. From a screen of IAP inhibitors, first-in-class ARTS mimetic A4 was most effective against high-risk and high XIAP-expressing neuroblastoma cells, and least toxic toward normal liver- and bone marrow-derived cells, compared with pan-IAP antagonists. On target engagement assays and nuclear magnetic resonance spectroscopy, A4 was observed to degrade rather than inhibit XIAP, catalyzing rapid degradation of XIAP through the ubiquitin-proteasome pathway. In MYCN-amplified neuroblastoma patient-derived xenografts, A4 significantly prolonged survival as a single agent, and demonstrated synergism with standard-of-care agents to reduce their effective required doses 3- to 6-fold. Engagement and degradation of XIAP by ARTS mimetics is a novel targeting strategy for neuroblastoma that may be especially effective against MYCN-amplified disease with intrinsically high XIAP expression. First-in-class ARTS mimetic A4 demonstrates preclinical efficacy and warrants further development and study. SIGNIFICANCE: XIAP degradation is sufficient to kill MYCN-amplified neuroblastoma which overexpresses and relies on XIAP as a brake against cell death, without affecting normal cells.


Assuntos
Neuroblastoma , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Animais , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Apoptose , Neuroblastoma/tratamento farmacológico , Proteínas Inibidoras de Apoptose/metabolismo , Mamíferos/metabolismo
17.
EMBO J ; 42(22): e113614, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37789765

RESUMO

Cellular inhibitor of apoptosis proteins (cIAPs) are RING-containing E3 ubiquitin ligases that ubiquitylate receptor-interacting protein kinase 1 (RIPK1) to regulate TNF signalling. Here, we established mice simultaneously expressing enzymatically inactive cIAP1/2 variants, bearing mutations in the RING domains of cIAP1/2 (cIAP1/2 mutant RING, cIAP1/2MutR ). cIap1/2MutR/MutR mice died during embryonic development due to RIPK1-mediated apoptosis. While expression of kinase-inactive RIPK1D138N rescued embryonic development, Ripk1D138N/D138N /cIap1/2MutR/MutR mice developed systemic inflammation and died postweaning. Cells expressing cIAP1/2MutR and RIPK1D138N were still susceptible to TNF-induced apoptosis and necroptosis, implying additional kinase-independent RIPK1 activities in regulating TNF signalling. Although further ablation of Ripk3 did not lead to any phenotypic improvement, Tnfr1 gene knock-out prevented early onset of systemic inflammation and premature mortality, indicating that cIAPs control TNFR1-mediated toxicity independent of RIPK1 and RIPK3. Beyond providing novel molecular insights into TNF-signalling, the mouse model established in this study can serve as a useful tool to further evaluate ongoing therapeutic protocols using inhibitors of TNF, cIAPs and RIPK1.


Assuntos
Proteínas Inibidoras de Apoptose , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Morte Celular , Apoptose , Inflamação/genética , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
18.
Microrna ; 12(3): 210-220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37718526

RESUMO

Colorectal cancer (CRC) is the second most common cause of cancer mortality, with approximately 1.9 million new cases and 0.9 million deaths globally in 2020. One of the potential ways to treat colorectal cancer may be through the use of molecular methods to induce cell apoptosis. Apoptosis is a natural cellular event that regulates the growth and proliferation of body cells and prevents cancer. In this pathway, several molecules are involved; one group promotes this process, and some molecules that are representative of inhibitors of apoptosis proteins (IAPs) inhibit apoptosis. The most important human IAPs include c-IAP1, c-IAP2, NAIP, Survivin, XIAP, Bruce, ILP-2, and Livin. Several studies have shown that the inhibition of IAPs may be useful in cancer treatment. MicroRNAs (miRNAs) may be effective in regulating the expression of various proteins, including those of the IAPs family; they are a large subgroup of non-coding RNAs that are evolutionarily conserved. Therefore, in this review, the miRNAs that may be used to target IAPs in colorectal cancer were discussed.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Apoptose/genética , Neoplasias Colorretais/genética
19.
Cell Oncol (Dordr) ; 46(6): 1837-1853, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542022

RESUMO

PURPOSE: Chemoresistance is a primary factor for treatment failure and tumor recurrence in non-small cell lung cancer (NSCLC) patients. The oncoprotein survivin is commonly upregulated in human malignancies and is associated with poor prognosis, but its effect on carcinogenesis and chemoresistance in NSCLC is not yet evident, and to explore an effective inhibitor targeting survivin expression is urgently needed. METHODS: The protumor characteristics of survivin and antitumor activities of bergenin in NSCLC cells were examined by MTS, colony formation assays, immunoblot, immunohistochemistry, and in vivo xenograft development. RESULTS: Survivin was upregulated in non-small cell lung cancer (NSCLC) tissues, while its depletion inhibited NSCLC tumorigenesis. The current study focused on bergenin, identifying its effective antitumor effect on NSCLC cells both in vivo and in vitro. The results showed that bergenin could inhibit cell proliferation and induce the intrinsic pathway of apoptosis via downregulating survivin. Mechanistically, bergenin reduced the phosphorylation of survivin via inhibiting the Akt/Wee1/CDK1 signaling pathway, thus resulting in enhanced interaction between survivin and E3 ligase Fbxl7 to promote survivin ubiquitination and degradation. Furthermore, bergenin promoted chemoresistance in NSCLC cells re-sensitized to pemetrexed treatment. CONCLUSIONS: Survivin overexpression is required for maintaining multiple malignant phenotypes of NSCLC cells. Bergenin exerts a potent antitumor effect on NSCLC via targeting survivin, rendering it a promising agent for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Survivina , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Pemetrexede/farmacologia , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Proliferação de Células , Linhagem Celular Tumoral
20.
Nat Struct Mol Biol ; 30(9): 1265-1274, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524969

RESUMO

The inhibitor of apoptosis protein BIRC2 regulates fundamental cell death and survival signaling pathways. Here we show that BIRC2 accumulates in the nucleus via binding of its second and third BIR domains, BIRC2BIR2 and BIRC2BIR3, to the histone H3 tail and report the structure of the BIRC2BIR3-H3 complex. RNA-seq analysis reveals that the genes involved in interferon and defense response signaling and cell-cycle regulation are most affected by depletion of BIRC2. Overexpression of BIRC2 delays DNA damage repair and recovery of the cell-cycle progression. We describe the structural mechanism for targeting of BIRC2BIR3 by a potent but biochemically uncharacterized small molecule inhibitor LCL161 and demonstrate that LCL161 disrupts the association of endogenous BIRC2 with H3 and stimulates cell death in cancer cells. We further show that LCL161 mediates degradation of BIRC2 in human immunodeficiency virus type 1-infected human CD4+ T cells. Our findings provide mechanistic insights into the nuclear accumulation of and blocking BIRC2.


Assuntos
Proteínas Inibidoras de Apoptose , Tiazóis , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Apoptose/genética , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...